翻訳と辞書 |
Pfister's sixteen-square identity : ウィキペディア英語版 | Pfister's sixteen-square identity In algebra, Pfister's sixteen-square identity is a non-bilinear identity of form : It was first proven to exist by H. Zassenhaus and W. Eichhorn in the 1960s,〔H. Zassenhaus and W. Eichhorn, "Herleitung von Acht- und Sechzehn-Quadrate-Identitaten mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und der Cayley-Dicksonchen Zahlen," Arch. Math. 17 (1966), 492-496〕 and independently by Pfister〔A. Pfister, Zur Darstellung von -1 als Summe von Quadraten in einem Korper," J. London Math. Soc. 40 (1965), 159-165〕 around the same time. There are several versions, a concise one of which is : : : : : : : : : : : : : : : : If all with are set equal to zero, then it reduces to Degen's eight-square identity (in blue). The are : : : : : : : : and, : The also obey, : Thus the identity shows that, in general, the product of two sums of sixteen squares is the sum of sixteen rational squares. No sixteen-square identity exists involving only bilinear functions since Hurwitz's theorem states an identity of the form : with the bilinear functions of the and is possible only for ''n'' ∈ . However, the more general Pfister's theorem (1965) shows that if the are just rational functions of one set of variables, hence has a denominator, then it is possible for all .〔Pfister's Theorem on Sums of Squares, Keith Conrad, http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/pfister.pdf〕 There are also non-bilinear versions of Euler's four-square and Degen's eight-square identities. ==See also==
* Brahmagupta–Fibonacci identity * Euler's four-square identity * Degen's eight-square identity * Sedenions
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pfister's sixteen-square identity」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|